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ABSTRACT 
 
The use of sensor arrays, embodied in electronic noses, to characterize complex samples is an 
active and dynamic expression of research in chemical sensors. In this review, we emphasize 
sensors, instrumentation, and applications aspects of electronic nose technology. In addition, we 
have added to the existing historical description of electronic nose development, projected likely 
directions into the future, and evaluated research needs that are a prerequisite to eventual success 
of electronic nose technology.  
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UNDERSTANDING CHEMICAL SENSORS AND CHEMICAL SENSOR ARRAYS: 
PAST, PRESENT, AND FUTURE. 
 
By Joseph R. Stetter and William R. Penrose 
 
Written in tribute to and in memory of our good friend and colleague Wolfgang Göpel who 
dedicated a part of his precious life to sensors, chemical sensor arrays and electronic noses. 
 
1.  INTRODUCTION 
 
The field of chemical sensors has expanded dramatically in the past twenty-some years. The first 
International Meeting on Chemical Sensors [IMCS] in 1983 in Fukuoka, Japan [1] was the one at 
which I first met Wolfgang Göpel. He had just returned to Germany to head the Institute for 
Physical and Theoretical Chemistry in Tübingen. The International Meeting on Chemical Sensors 
(IMCS) has been held eight times, as has the �Transducers�� series of conferences, since 1983. 
These conferences were the result of the international interest in the topic generated at an earlier 
Material Research Society technical session in 1980. Recent conferences on chemical sensors can 
be found on the websites of many technical organizations [2]. 
 
A major enthusiast and a leader in the explosive growth of the chemical sensor field was the late 
Wolfgang Göpel (1945-1999), scientist, friend and colleague. His efforts encompassed the tireless 
pursuit of better chemical and physical sensors as well as a more complete understanding of the 
science behind a broad range of sensors. It is in this tradition of sensor science, that this 
perspective and update is presented, with a special focus on gas sensors and the special properties 
of sensor arrays, including those applications often known as �electronic noses�. We will describe 
current capabilities and some recent publications in a historical context in an attempt to make 
useful comments about future capabilities and trends. This review will discuss sensor arrays or 
electronic noses from the point of view of the sensors, analytical chemistry, and recent 
applications including the successes of artificial olfaction. Also, we will provide interpretive 
comments concerning the origin of unique sensing capabilities and the debunking of popular 
myths that have arisen about the electronic nose technology. The biology of olfaction and pattern 
recognition has been covered in depth by two recent, excellent reviews, and will not be covered in 
any depth here. The focus of this review is to summarize current understanding in new and 
meaningful ways that are complementary and not redundant to earlier issues of Sensors Update. 
 
The scientific world of chemical sensors includes those that operate in gases, liquids, and solids. 
While arrays of gas sensors are known as "electronic noses", arrays of liquid sensors are 
becoming known as "electronic tongues". Sensing in each phase presents different technical 
challenges, but chemical sensors in all phases share some common characteristics. The following 
discussion centers mainly around gas sensors, but will often apply to all classes of chemical 
sensors. Although a discussion of sensor arrays is the main purpose of this paper, a discussion of 
individual sensors with a focus on those most frequently found in arrays is presented. The 
understanding of sensor principles and metrics is essential to the understanding of the 
performance of the resulting sensor arrays.  
 
Chemistry, quality control, and process applications in the food industry have so far been the 
most common applications of sensor array technology. Many foods give strong signals on 
chemical sensors, compared with other sample types. Moreover, the great complexity of odors 
and flavors, as well as their subjective nature, frequently defeats conventional analytical methods. 
The potential for rapid analysis at lower cost has also made electronic nose technology attractive 
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to the food industry. In our laboratory, coffee, tea, cooking oils, cheeses, and beer have been used 
for student projects because they provide fine distinctions and good sensor responses [3]. 
 
2.  THE LITERATURE ON CHEMICAL SENSOR ARRAYS AND ELECTRONIC 
NOSES. 
 
The literature on chemical sensors, sensor arrays, and electronic noses has been regularly 
reviewed in Sensors Update. There has been a steady and rapid increase in the rate of appearance 
of references to electronic noses. From January 1994 to June 2001, there are over 360 returns on 
the keywords �electronic nose(s)�, "artificial olfaction", or "sensor array(s)" from the Current 
Contents database (�sensor array� returns were filtered to exclude optical imaging and similar 
physical sensor arrays). A crude classification of these terms is shown in Table I. Many of these 
have been selected for inclusion in the bibliography for this manuscript.  
 
***TABLE I NEAR HERE 
 
Not surprisingly, much of the effort over the past eight years has been in the selection of gas 
sensors and instrument design. The novelty of the field has attracted a burst of development. 
Since sensor array instruments are not difficult to build, it is not surprising that many alternative 
designs and sensor selections are published each year. 
  
Chemistry, quality control, and process applications in the food industry have so far been the 
most common applications of sensor array technology. Many foods give strong signals on 
chemical sensors, compared with other sample types. Moreover, the great complexity of odors 
and flavors, as well as their subjective nature, frequently defeats conventional analytical methods. 
The potential for rapid analysis at lower cost has also made electronic nose technology attractive 
to the food industry. In our laboratory, coffee, tea, cooking oils, cheeses, and beer have been used 
for student projects because they provide fine distinctions and good sensor responses [3]. 
 
Major reviews on sensor arrays and electronic noses have appeared in the present series. Volume 
2 of Sensors Update contained a review emphasizing pattern recognition [4], while a 
complementary article in Volume 3 addressed primarily the biology of olfaction [5]. We will not 
revisit these subjects, but will emphasize progress in sensors, sensor arrays, and electronic noses 
since the 1991 review by Vaihinger and Göpel [6] in the foundation volumes of this series.  
 
Other reviews have appeared from time to time, with increasing frequency. As we have 
discovered ourselves in the preparation of this review, the field is rapidly becoming too large to 
cover comprehensively in a single contribution, and so most recent reviews have emphasized one 
or another aspect of the technology. In a recent Chemical Reviews, the properties of sensor arrays 
were covered by Albert et al. [7], while Jurs et al. [8] surveyed the literature on pattern 
classification algorithms. General reviews, that might be used as a first introduction to the field, 
are already becoming quite dated, although still useful. We would suggest the papers by 
Dickinson et al. [9] and Nagle et al. [10]. A textbook entitled �Electronic Noses� was recently 
published by Gardner and Bartlett [11], although it emphasizes chemical sensors with only 
relatively brief mention of sensor arrays and electronic noses. Excellent explanations and 
expositions on the electronic nose and sensor arrays can be reached at several academic 
institutions through the NOSE website [12].  
 
The term �electronic nose� came into more common use after it appeared in the title of a major 
monograph on the electronic nose, edited by Gardner and Bartlett [13], which resulted from a 
1991 NATO-sponsored meeting convened in Reykjavik, Iceland. To avoid the pejorative 
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connotation of the term �electronic nose�, some authors prefer the term "artificial olfaction", 
while others prefer the more formal (if ambiguous) "chemical sensor arrays". Another multi-
authored review, edited by Kress-Rogers [14], emphasized biomedical applications of electronic 
noses, along with biosensors.  
 
Electronic noses have been the subject of at least one symposium series. A loose organization of 
researchers, first assembled by the French company Alpha MOS, has sponsored an annual 
International Symposium on Olfaction and the Electronic Nose. Even though the conference no 
longer has an institutional base, it held its eighth consecutive symposium in March 2001 in 
Washington, DC, under the aegis of The Electrochemical Society [15]. Some of the more recent 
meetings of this group have also resulted in published proceedings volumes [16].  
 
Because the electronic nose paradigm has not yet been sanctified by the passage of long periods 
of time, considerable ingenuity continues to be invested in exploration of unique designs. Walt's 
group at Tufts University (Amherst, MA) has explored the optical behavior of polymer beads 
with different surface chemistry, coated with a solvatochromic fluorescent dye [17]. A large 
number of different bead types are mixed together. They are attached to the ends of optical fibers, 
where each may be individually interrogated with a light pulse. Because of the method in which 
the beads and fibers are assembled, the assignment of "sensors" (the sensitive polymer beads) to 
data channels (individual fibers) is random. A neural network is used to create an association 
between each sample type and the pattern of responses. In a real sense, this device resembles the 
structure and ontogeny of the mammalian olfactory sense more than many other realizations of 
electronic nose technology. The approach has been given the trade name of BeadArray and is 
being commercialized by Illumina, Inc. (San Diego, CA). A unique hint at the future can be 
gained by examination of the result of an experiment that would place several of these optical 
arrays inside a physical model of a dog�s nose. This experiment would produce data that 
consisted of arrays of array data separated in space and time with some chemical filtration [i.e. 
changes] in between. This is very much like the mammalian olfactory system and should produce 
enhanced results with the additional information content. 
 
Another unique variation on the electronic nose is the colorimetric sensor array recently proposed 
by Rakow and Suslick [18] for identifying solvent vapors. These authors noted that most odorous 
compounds have at least some Lewis base activity, and would bind to the central atom of a 
tetraphenylmetalloporpyrin, changing its color in a unique way. The authors spot a series of 
different metalloporphyrins onto a silica substrate in a stereotyped pattern and expose it to various 
solvent vapors. Each vapor produced a unique pattern of colors. Such an "electronic nose" is not 
necessarily electronic, and does not even require an instrument! The authors, however, have 
proposed a CCD-camera to reduce the array colors to digital form for processing by automatic 
means.  
 
 
3. CHEMICAL SENSORS AS RELATED TO ANALYTICAL CHEMISTRY AND 
ARRAYS. 
 
To understand chemical sensor arrays, one should first understand chemical sensors and how their 
information is developed. The specific properties of each chemical sensor used in the array 
provide the chemical dimensionality to the array data and hence determine its sensing capability. 
Just as different human noses are different among people and their ages, sensors are also 
differently selective and sensitive. Some sensors respond to volatile organics and others to 
permanent gases. The wide range of chemical sensors now available is at least in part the reason 
for the evolution of arrays and electronic noses and, more recently, electronic tongues. 
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For the remaining sections, we will define a "class" of chemical sensors as one operating on a 
common transducer platform.  Sensors using the DC resistance of a heated metal-oxide 
semiconductor (whether "Taguchi" SnO2 sensors or higher temperature Ga2O3 sensors) would 
then be members of the same class, electrochemical sensors, and the subclass of impedance-based 
sensors. Sensors within a class with distinct properties can be referred to as "types." Thus, the 
differently doped SnO2 sensors, made to have different selectivities for hydrogen, methane, and 
carbon monoxide, are "types" within the "class" of electrochemical-impedance sensors and are 
often called heated metal-oxide semiconductor or MOX sensors. While the nomenclature of 
�classes� and �types� is not standard or established in the literature yet, we will use it here to add 
clarity to the discussion of sensors and arrays.  
 
Further, for the sake of this discussion, we can define four distinct kinds of problems each 
demanding a different analytical perspective as described in Table II. Of course any instrument 
can be used for any problem it solves. Infrared (IR) spectrometers have been used for the 
relatively simple online CO measurement for a long time. But the above comments point to 
typical analytical devices and instruments used to solve the analytical problem at hand. While it 
has been the goal for many years to obtain a sensor to detect trace explosives like TNT (a Type A 
problem), it would be difficult to imagine a single sensor capable of complex mixture analysis. 
Even high resolution IR spectrometers require additional help, including experienced human 
operators, in order to arrive at useful answer. 
 
***TABLE II NEAR HERE 
 
There are basically three types of �sensors� or tiny self-contained analytical systems that can 
perform chemical analysis: 
 
(Type 1) Chemical Sensors and Bio-Sensors that measure quantity or quality of a substance 
because of its chemical reaction with the sensor interface, while the extent of this reaction is 
converted (transduced) to a measurable electrical signal by communication of the interface with a 
physical transducer.  
 
(Type 2) Micro-Instruments that measure molecular properties, like small IR spectrometers. 
These are typically physical sensors that measure a molecular property. Chemists call this 
molecular spectroscopy and it can be done with electromagnetic (NMR, IR, UV, Xray), thermal 
(TGA, DTA, thermal conductivity), electronic (Auger), mechanical (sonic), or many other forms 
of energy interacting with the molecule. We extract molecular information from measuring the 
change in the physical energy that was caused when the energy interacted with the molecule. 
These sensors have been called physico-chemical sensors but this distinction is superfluous. An 
example of such a sensor is the nondispersive infrared sensor commonly used to measure carbon 
dioxide in ambient or exhaled air; some such commercial sensors are less than 25 cm3 in size and 
the latest research has given us microfabricated versions [19].  
 
(Type 3) Micro-Total Analytical Systems (u-TAS), as they have become known, that are small 
analytical systems incorporating sampling, separation, mixing, transporting, detecting and all 
types of such analytical processes. They are generally made by silicon lithography, plastic 
molding, or imprinting methods [19].  
 
While these definitions are somewhat arbitrary, they serve a useful purpose here so that we can 
discuss the field of sensors in an organized manner. As far as a customer or application is 
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concerned, a definition of chemical sensor could be �anything that goes into the small box and 
solves the analytical problem as long as the chemical analysis is correct.� But when we develop 
or discuss technology, the utility of the definition is proved by the increase in understanding and 
communication it provides.  A more complex and comprehensive definition of a chemical sensor 
is given in Table III.  
 
TABLE III NEAR HERE 
 
The chemical sensor, as Wolfgang and I knew, is �a small self-contained integrated system of 
parts, that, as the result of a chemical interaction or process (i.e. a reaction) between the analyte 
and the device, transforms chemical or biochemical information of a quantitative or qualitative 
type into an analytically useful signal.� This is a type 1 device and all three types are compared in 
Figure 1. Conceptually, every chemical sensor consists of two domains: the physical transducer 
and the chemical interface layer or receptor domain (Figure 1a). At the chemical interface, the 
analyte interacts chemically with a surface or coating or catalyst that is part of the device and 
produces a change in physical/chemical properties. These changes are measured by the transducer 
domain, which monitors this change and generates a proportionally related electrical signal. 
Sometimes these domains are intermixed and the same, sometimes not. Sensors are frequently 
classified and named by their transduction method, e.g., conductimetry; potentiometry; 
amperometry; gravimetry, which includes SAW (surface acoustic wave) and  QMB (quartz 
crystal microbalance) transduction; optical (fiber optic, spectrometric, and refractometric); metal 
oxide semiconductor or �MOX� (heated metal oxide chemiresistive); conductive polymer 
chemiresistive; polymer composite chemiresistive; or capacitive. Alternately, they may be named 
according to their structure, as in MOS (metal-oxide-semiconductor) or MIS (metal insulator 
semiconductor) sensors. A third name is derived from the chemical reaction such as �sorption� 
sensors or �catalytic� sensors. 
 
FIGURE 1 NEAR HERE 
 
The schematic of a chemical sensor, Figure 1a, is compared to a micro-instrument illustrated in 
Figure 1b and a µ-TAS in Figure 1c. Not included in the sensors here are the sampling systems or 
inlets, the housings, and the readout that is necessary to get an analytically meaningful result. 
These parts are often backward integrated into the sensor device as far as possible to meet 
simplicity, performance, or cost objectives. The physical sensor, Fig. 1b, sends out and receives a 
form of energy that interacts with the analyte molecule and, most distinctly, has no chemical 
interface that, per the above definition, is a required part of the chemical sensor. In the physical 
sensor for chemical analysis category are measurements of thermal conductivity (thermal sensor), 
infrared absorption (optical sensors), paramagnetism (usually for oxygen), NMR , etc. The 
analytical chemist calls this molecular spectroscopy when electromagnetic energy is involved and 
we could call this micro- or nano-molecular spectroscopy to differentiate it from the larger 
instrumentation found in the laboratory. 
 
In the u-TAS group illustrated in figure 1c, the portable GC or �lab on a chip� is illustrated. Also, 
we could include in this group the MS on a chip because it contains an inlet, ionization chamber, 
accelerator, mass filter, and ion detector in a vacuum and represents a process for molecule or 
atom isolation and subsequent detection. This approach integrates as many analytical processes as 
are required to solve the problem at hand. 
 
Note well that the chemical or bio-sensor has a reactive interface. Every chemical reaction is 
characterized by a equilibrium constant with its attendant thermodynamic characteristics that can 
be used to understand the sensor. Note also that the interface is changed during sensing, i.e. it is 
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stoichiometrically a different material before and after analyte exposure! This is in stark contrast 
to the physical sensor or microinstrument as defined above. 
 
Figure 2 illustrates one way to represent the categories of chemical sensors arranged by their 
physical principle, i.e., the physical sensor that transduces the signal. In this manner we see 
reactions at the interface that are catalytic or absorptive in all classes of sensors. For discussion 
purposes, it is also useful to organize chemical sensors by the type of chemical reaction that 
occurs at the interface. In Table IV we illustrate this rarely taken approach in the sensor literature. 
Each reaction is characterized by a different type of chemical reaction, an equilibrium constant, 
and attendant kinetic parameters. These chemical parameters will determine to a large extent the 
observed sensor performance and provide an explanation for the observed sensor selectivity and 
sensitivity. 
 
FIGURE 2 NEAR HERE 
 
TABLE IV NEAR HERE 
 
Each of these chemical reactions can be used on virtually any transducer platform. For example, I 
have heard many times and read many proposals for sensor development where the proposer says 
that a sensor will be built for a gas, perhaps CO, on a platform, perhaps optical, and �all that is 
needed� is the right coating to make the sensor work. The next logical step seems to be to test a 
thousand polymer coatings for this purpose, but never the proposed chemical reaction that will be 
used to achieve the selectivity and sensitivity. It is a simple matter to understand that the polymer 
coating is not a very promising approach for CO, because it works by partitioning, an equilibrium 
reaction of the analyte between the mobile (or gas) and stationary (or liquid) phases. The amount 
of analyte that is absorbed into the stationary phase � the polymer in this case � is governed by 
this equilibrium constant. If no gas partitions into the surface coating, no change can be induced 
that will be detected by the platform. Typical GC phases attract gases by intermolecular or 
condensation forces, which are very weak in permanent gases like CO. This is the reason QMB 
and SAW devices that use a polymer coating have very low sensitivity to CO.  
 
Logic would dictate the use of a chemical interface that was designed to take advantage of the 
special properties of CO. Since CO strongly adsorbs to certain metals and is oxidizable even at 
very low concentrations, the selection of a metal-based coating such as a metalloporphyrin, or an 
oxidation as the chemical interface is more promising. In fact, catalytic combustion on a metal 
oxide semiconductor, or an electrocatalytic oxidation, such as occurs in the amperometric CO 
sensor, are the favored reactions for common CO sensors. So consideration of the reaction type is 
extremely useful when trying to predict sensor characteristics while consideration of the 
transducer platform is less useful for this purpose.  
 
When we categorize the chemical sensors by the chemical reaction of the chemical interface, it 
can make them easier to understand. Understanding makes it possible to avoid mistakes. Suppose, 
for example, we are searching for a sensor that will measure benzene in the presence of another 
aromatic hydrocarbon, such as naphthalene. Using a carbon sorbent operating with a 
physisorption reaction is not a promising approach. The intermolecular forces that are responsible 
for physisorption of aromatic compounds to carbon are going to be similar for all aromatics, and 
they will be stronger for polyaromatic compounds than for benzene. It is not reasonable to 
promise to develop a surface that will detect benzene to the exclusion of naphthalene or other 
aromatics using partition coefficients alone. The carbon coating will always adsorb more 
naphthalene than benzene at any temperature or pressure. This is a qualitative statement of the 
thermodynamics of gas adsorption, from which we can derive that physisorption forces are 
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similar to condensation. There will be no high sensitivity physisorption unless the substrate is 
cooled to at or below the boiling point of the analyte. It also explains why on sorption sensors, 
naphthalene is more "sensitively" determined because at any given gas pressure, more 
naphthalene than benzene will be condensed. This is not to say that it is impossible to selectively 
detect benzene in the presence of naphthalene, but it must be done by some selective interaction 
beyond simple surface adsorption, perhaps by molecular size. Molecular sieves, polymer 
imprinting, or some specific chemical reaction are better choices for the choice of a detection 
mechanism.  
 
Further, selectivity is only achieved if the reaction is selective among the sample constituents. 
That is, an acid coating on the surface will detect all volatile bases. The relative sensitivities to 
bases will be determined by the relative strength of the acid-base equilibrium constants.  
 
Sensitivity is also a function of temperature. The temperature response of amperometric sensors is 
a function of the temperature behavior of several electrode processes with different parameters, 
which are exponential, but may oppose or enhance one another. Sensor response, therefore, may 
increase or decrease with temperature, but perhaps not in a predictable way. It is for such reasons 
that many amperometric sensors are designed with a pinhole to limit the analyte entry into the 
sensor. In this way, the response is limited by a single, predictable physical process such as 
diffusion, which varies with √T.  
 
In summary, to understand the origins of the performance characteristics like sensitivity, 
selectivity, response time, and stability, we examine the type of chemical reaction and its relevant 
thermodynamics and kinetics. Of course this can be an oversimplification if the sensor device is 
limited by the transducer platform or physical housing. But when studying and reporting results 
with sensors, testing and experimentation should clearly address the limiting factors be they the 
chemical interface, the physical system, or the transducer. 
 
With this guidance, one can identify and resolve some of the myths about sensors, and better 
direct the development of sensor systems for any given application. In the latter discussion, we 
illustrate these principles considering that all E-noses are not created equal. Some are biased 
toward the detection of vapors and some permanent gases, some operated over a broad range of 
concentrations and others over a narrower window. It also becomes clear why heterogeneous 
arrays can perform many analytical tasks better than a homogenous array. The heterogeneous 
array is capable of responding to more classes and types of compounds in the sample, over a 
broader range, and can produce a larger information output. 
 
Finally, we summarize some of the observations we can make about chemical sensors by 
collecting their common properties. Most often chemical sensors do not necessarily measure a 
simple physical property. A simple illustration is the response of a QMB polymer coating to a 
given analyte vapor, say benzene, at high and low relative humidity. Because of the presence of 
water vapor, we are no longer measuring the simple partitioning of benzene into the coating but 
the partitioning in coatings in different hydration states. Moreover, the interactions of water or 
matrix with the coating and benzene with the coating are interdependent. The coating may also 
change stiffness in response to analyte, water vapor, or other interfering compounds, which also 
affects the QMB response. Piezoelectric gravimetric sensors response not just to the mass 
loadings, but also to the shear modulus, or stiffness, of the coating. The final observed response 
will be the summed output of several reactions and several physical/chemical property changes 
that have occurred in the systems because of the interfacial reactions. These may or may not be 
linearly additive. 
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4.  SENSOR ARRAYS AND ELECTRONIC NOSES 
 
4.1 Properties of Chemical Sensor Arrays and Electronic Noses 
 
A chemical sensor array once required little definition. It was merely a collection of sensors, with 
the only restrictions being that the sensors were all exposed to the same or nearly the same 
sample, and the responses were interpreted together. Exercise of the imagination in developing 
new electronic nose modes and embellishments has since complicated the definition. Often, it is 
necessary to specify the order of the sensors in the array, because some sensors act upon the 
sample and change it. An example of this is metal-oxide (MOX) sensors, which efficiently 
oxidize the sample and change the response of other, downstream sensors. The sensors may be of 
the same or mixed classes, and each will exhibit the features, advantages, limitations, and 
problems of its respective class. These arrays are termed homogeneous and heterogeneous arrays, 
respectively. Some of the classes of chemical sensors that have been used in arrays are listed in 
Table V.  
 
TABLE V NEAR HERE 

 
An additional complication in defining a sensor array is the emergence of the term virtual sensor. 
A virtual sensor refers to a large number of distinct responses gathered from a single or smaller 
number of physical sensors. An example is the use of the mass spectrometer as a sensor, in which 
a single physical detector (a photomultiplier) is used to gather hundreds of distinct m/e responses, 
any of which can be isolated and treated as a separate sensor response. Other examples of virtual 
sensors are sample fractions eluted from a gas chromatograph column, selected wavelengths from 
an infrared spectrometer, and the early use of programmed sample preprocessing to obtain 
multiple pattern elements from single electrochemical sensors in a sensor array [20,21].  
 
The important feature of the sensor array lies in the collected responses of its constituent sensors. 
We are in the habit of calling the ordered array of sensor responses a "pattern", because at this 
stage of description we are beginning to enter the territory of pattern recognition or pattern 
classification, and we should properly adopt the terminology of this field. The patterns of sensor 
responses are uniquely determined by each sample. In the simplest interpretation, we can plot the 
sensor response patterns as histograms. For sufficiently different chemicals, these can usually be 
distinguished by eye (Figure 3).  
 
FIGURE 3 NEAR HERE 
 
The sensor array is one of three defining components of an "electronic nose" (Figure 3). Although 
there is no universally-accepted definition of an electronic nose, it is in all cases a gas sensor 
array packaged for use in practical analytical problems. The use of the term "electronic nose" 
became more common after the monograph by Gardner and Barlett [13], although nowhere in 
that collective volume does any author venture a definition of the term. Gardner and Bartlett [22] 
finally proposed a definition that may stand the test of time. They described the electronic nose 
as... 
 
"...an instrument, which comprises an array of electronic chemical sensors with partial specificity 
and an appropriate pattern-recognition system, capable of recognizing simple or complex 
odours." 
 
We would interpret the term instrument to include the sampling system and "partial specificity" 
as referring to the broad, differential selectivity that is observed in most reactive chemical 
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sensors, such as metal-oxide or electrochemical. Some authors, including some of those who are 
deliberately attempting to model the olfactory system, continue to scrupulously avoid the 
�electronic nose� terminology [23,24]. In fact, it is probably too soon to place a restrictive 
definition on the electronic nose concept. At this time, a great deal of imagination is being 
devoted to ways of deriving real-time, multidimensional patterns from vapor samples. The 
configuration that will prove most general and useful, and which may eventually be called �the� 
electronic nose, may very well be still awaiting discovery. 
 
After the sensor array, the second defining component of an electronic nose is the pattern 
classifier. This is a means of extracting information from the collected sensor array patterns by 
comparing or associating them. In practice, this means associating a pattern from an unknown 
sample with a set of patterns from known standards to determine the closest match, for the 
purpose of identification.  

 
The sampling system is usually sufficiently important that it is listed as the third essential 
component of an electronic nose. The sampling system assures that samples are supplied to the 
sensor array in a reproducible way, and conditioned if necessary to adjust concentration, 
temperature, water vapor concentration, etc. Some sampling systems also provide for automated 
measurement of a series of samples, although this is not a defining requirement.  
 
4.2 History of the Electronic Nose 
 
It seems that the electronic nose has had independent origins, in Europe, Asia, and North 
America. The European effort originated in attempts to mimic the mammalian olfactory system 
[25]; the North American genealogy had its roots in directed development of field portable 
identification and quantitation of toxic vapors [26], and the Asian effort to engineering solutions 
to specific odor detection systems [27]. These separate efforts are detailed in the remainder of this 
Subsection. 
 
To our knowledge, the first attempt to use sensor arrays to emulate and understand mammalian 
olfaction was carried out by Persaud and Dodd [25], at the University of Manchester Institute of 
Science and Technology. Their purpose was to model the current conception of the mammalian 
olfactory system by demonstrating that a few sensors could discriminate among a larger number 
of odorants. They constructed an array of three metal-oxide gas sensors, which they used to 
discriminate among twenty odorous substances, including essential oils and pure volatile 
chemicals. Pattern classification was performed by visual comparison of ratios of sensor 
responses. A decade later, their discovery took the form of the AromaScan , a commercial 
"electronic nose" instrument [28,29,30]. 
 
In 1980, in North America, a group led by the author started building an analytical instrument 
based on a chemical gas sensor array [20, 31, 32, 33]. At the time, our goal was to build a 
portable instrument for the U.S. Coast Guard. This organization needed a portable instrument that 
would rapidly identify and measure volatile chemical vapors in emergency situations, such as 
hazardous material spills. Rather than adopting one of the conventional approaches to chemical 
analysis, such as gas chromatography or infrared spectrometry, we elected to examine the 
differential responses of an heterogenous array of chemical sensors. We considered 
electrochemical, infrared, MOX, catalytic, photoionization, and other candidate sensors. 
Ultimately, the prototype used only four electrochemical sensors. Since many common 
chemicals, such as hexane, do not react on electrochemical sensors, a heated catalytic filament in 
the sample stream converted electrochemically inactive compounds to reactive ones [20]. By 
varying the temperature of the filament, different patterns were obtained from the four sensors 
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(Figure 4). This catalytic conversion of the sample was reproducible over wide ranges of 
concentration and relative humidity, provided the filament temperature and sample flow rate were 
tightly controlled. Different patterns were obtained from the sensors by operating the filament at a 
different temperature. By operating the filament at four temperatures from 600ºC to 950ºC, the 
number of sensors was effectively increased from four to 16. We would say now that the 
instrument had four physical sensors and 16 virtual sensors. A relatively straightforward 
application of the "k-nearest-neighbor" pattern classification algorithm was used to compare the 
resulting patterns and to automatically identify unknown vapors. We demonstrated that this tiny 
heterogeneous sensor array could be packaged in a camera bag and accurately identify and 
quantify over thirty compounds. We estimated that well over one hundred compounds was 
possible [26,31,34]. This work resulted in the first engineered, packaged, fully functional field-
tested instrument that included both the gas sensor array and pattern classifier. A commercial 
version was offered for sale in 1985 by Transducer Research, Inc. (Naperville, IL). The 
instrument was recently reconstructed in our laboratory and dubbed the �ILLI-Nose� (for 
Illinois). It still rivals modern instruments in selectivity and detection limits.  
 
FIGURE 4 NEAR HERE 

 
In the course of this work, we sometimes informally used the term "electronic nose". Now that we 
know more of the operation of Nature's noses, the term is no longer a joke. We can see that there 
are direct and meaningful parallels between the structure of the natural and artificial noses (Figure 
5). The human nose, for instance, has olfactory sensor cells, each with a receptor protein that 
interacts with a range of volatile odorant molecules.  There are estimated to be 100 million 
receptor cells, but only 100-200 different types of receptors [35, 36].  The brain learns to 
recognize the pattern of signals associated with certain odors, rather than the response of 
individual, highly selective cells. 
 
In Asia, scientists were also beginning to foresee the potential of sensor arrays. In 1984, Iwanaga 
et al. [37] proposed an instrument employing an array of metal-oxide semiconductor sensors, but 
suggested using simultaneous equations to compute the relative concentrations of gases in a 
sample. In order for this approach to work, all the gases present in the sample would have to be 
known. (Clifford [38, 39] patented a similar idea in North America in 1985.) This approach does 
not use pattern recognition and is suitable only for certain industrial processes where all the 
analyte gases are known. This severely limits the use of the array in uncontrolled situations, i.e., 
most of the proposed uses of the e-nose in food science, medicine, and industry. More complex 
data interpretation was needed [26]. 
 
The work on chemical sensor arrays therefore proceeded on three continents in the 1980s. Ehara 
et al. [40] suggested an array of microfabricated metal-oxide semiconductor sensors, but relied on 
visual comparison of the signals for comparison of samples. In 1986, Ballantine et al. [41] used 
an array of four SAW sensors to generate patterns, and found structure-activity correlations 
among a series of substances, including selected chemical warfare agents. Importantly, they 
employed pattern-recognition methods to treat the array signals. This pattern recognition work 
was emphasized by Rose et al. [21, 42]. With a sampling system consisting of an organic sorbent 
preconcentrator and a short GC column, the SAW array was embodied in an instrument that was 
ultimately offered for sale [43]. 
 
About the same time as Persaud and Dodd's work resulted in the commercial AromaScan, we 
independently addressed the power of sensor arrays to work with ill-defined samples such as 
odors and flavors. We successfully used our original electrochemical sensor array instrument, 
with an improved sampling system and neural network pattern recognizer, to classify odors from 
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samples of sound and spoiled grain for the U.S. Department of Agriculture [44]. The final device 
was nearly as reliable as trained human inspectors at classifying grain samples as "good", "sour", 
or "musty". The electronic nose was about 83-96% in agreement with the human inspectors, 
depending on the sample type. According to data supplied with the samples, the human inspectors 
only agreed with one another at the same rate of 93%.  
 
The explosion of interest in sensor array technology, especially in Europe, led to the international 
conference in Iceland [13]. We are humbled by the large number of scientific and engineering 
groups throughout the world who have made contributions to this development of the electronic 
nose technology (see reviews cited). All of us in the e-nose field are sincerely indebted to the 
great volumes of scientific and engineering work in tiny chemical sensors, computer algorithms 
for pattern classification, low power portable microcomputer systems, and our understanding of 
the olfactory process. Without these advances, the e-nose would never have become a reality for 
any of us. 
 
4.3  Sensor Array Configurations in Electronic Noses 
 
Like the mammalian olfactory system, the electronic nose uses a holistic approach to distinguish 
aromas.  It does not separate or attempt to identify the individual chemicals responsible for the 
pattern. The electronic nose works equally well on pure compounds or on undefined samples such 
as flavors, aromas, and other complex odors. Conventional reductionist analytical methods often 
become less reliable as sample complexity increases. Our work on grain odors, for example, was 
preceded by a three-year effort by the USDA to use GC-MS to distinguish grain quality. The 
author of the final report on this study stated, after analysis of more than 300 samples, that "no 
relationship between the chemical composition and the odor could be found" [45]. Other authors 
have had similar problems correlating the results of detailed chemical analysis with organoleptic 
responses [46, 47].  
 
Although conventional analytical instruments become less effective as sample complexity 
increases, the electronic nose retains its ability to discriminate closely related samples. It has 
found applications in the food and cosmetics industry, and there are other potential applications 
everywhere in industry. A particularly potent example is coffee, where the simplest electronic 
noses can make fine distinctions between blends [48]. Vintners have been able to identify wines 
by provenance as well as vintage [49, 50]. This distinguishing power can be thought of as an 
outcome of the chemical imaging character of the array that has been estimated to be able to 
represent more than 1021 different dimensions with even a simple array [51]. This view of the 
sensor system and its dimensions is a unique consequence of the complexity and selectivity of 
chemical and biochemical reactions. 
 
Because the electronic nose is not yet a fixed configuration like a gas chromatograph or a mass 
spectrometer, much imagination has gone into its design. In this section, we will review the 
following topics: 
 

• The standard or "homogeneous" sensor array. 
• Virtual sensor arrays. 
• Heterogenous (mixed-class) sensor arrays. 

 
4.3.1 The Homogeneous Sensor Array 
 
The majority of electronic noses, commercial and otherwise, use sensors of the same class, but 
generally of different types within a class. Figaro Engineering, Inc., lists more than 25 tin oxide 
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sensors in its product line, making a large variety of arrays possible for just this one class. A 
recent example is the array of 12 tin oxide sensors employed by Romain et al. [52] to discriminate 
environmental odors. Sensors may be operated under different conditions to alter their 
selectivities. Tin oxide sensors, for example, can be heated to different temperatures. There are 
fewer basic types of electrochemical sensors than of tin oxide sensors, but their selectivity can be 
modified further by altering the working electrode potential. 
 
4.3.2 Virtual Sensor Arrays 
 
A virtual sensor array consists of a small number of sensors, perhaps only one, which is 
manipulated to contribute many quasi-independent elements to the output pattern. In our original 
sensor array instrument, for example, four amperometric sensors were made to yield sixteen 
signals by pretreating the sample over a hot filament at four temperatures [20]. The response of 
alcohols, which have a strong natural response on amperometric sensors, decreases as the 
filament temperature is increased. Presumably, the alcohol is oxidized to less reactive substances. 
Most other organic compounds, such as ketones and alkanes, show increasing responses as 
temperature increases. Mielle and Marquis [53] recently used a tin oxide sensor operated at seven 
different temperatures on the same sample to generate quasi-independent pattern elements. 
Sensitivity to aldehydes was highest at low or intermediate temperatures, and sensitivity to 
alcohols was highest at the higher temperatures. Strathmann et al. [54] used sample adsorption 
followed by programmed thermal desorption to preconcentrate sample vapors for the Moses e-
nose. They discovered that they were also able to derive extra pattern elements from desorption at 
stepped temperatures, greatly increasing the selectivity as well as the sensitivity of the Moses 
instrument.  
 
Since pattern classifiers are blind to the physical source of their data, some electronic nose 
designers have devised even more radical ways of extracting independent pattern elements. 
Agilent Technologies (formerly Hewlett-Packard) has developed an electronic nose based on a 
mass spectrometer. Individual m/e peaks, or total ion current integrated over selected mass 
ranges, have been used to generate the patterns [55]. Another designer uses a single SAW sensor 
as the detector for a gas chromatographic column. The heights of selected peaks serve as the 
pattern data [56]. Company literature advertises �500 sensors�, referring to the elution intervals. 
This is not really new, since chemists have looked for structure-activity relationships in gas 
chromatograph data for 30 years. Optical spectra, especially in the analytical region of the 
infrared, have also been used historically to identify compounds; recent technology has involved 
pattern classification algorithms [57].  
 
Data derived from mass spectrometry or gas chromatography is still subject to the same �MOSES 
principle� restrictions as data from discrete sensors (see the next section). Data sources, whether 
discrete sensors, or a region of a mass spectrum, that do not contribute to the identification of the 
sample, will still add noise. Accordingly, the selection of data sources must be optimized for 
every application. 
 
4.3.3 Heterogeneous (Mixed-Class) Sensor Arrays.  
 
Developers of electronic noses have experimented with arrays of different sizes. The most direct 
way to improve the data would seem to be to increase the number of sensors of the same class, 
i.e., using 20 sensors instead of four. However, this approach meets rapidly diminishing returns. 
Stetter et al. [21] demonstrated strong correlations among data in different data array elements 
from their virtual electrochemical sensor array, presumably because treatment of the sample 
vapor with the heated catalyst filament did not produce entirely independent data. Similar 
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interdependence might be expected with any array where all sensors belong to the same class. A 
statistical approach illustrates that a small array of 6 sensors is all that is required to differentiate 
up to 100 different patterns/compounds when found alone or in mixtures of up to four of the 
compounds that constitute the data base [34]. However, an assumption restricting the response of 
each pattern to 5 of the 6 sensors had to be made. This illustrates the important of �off� or no 
response data in such array systems. 
 
In 1998, Göpel and colleagues demonstrated that if sensors from several classes are used to form 
the array, the discriminating power is greatly increased  [58]. His prototype instrument contained 
eight MOX sensors, eight QMB sensors, and eight calorimetric sensors, arranged in separate and 
interchangeable modules. They demonstrated greatly increased discrimination between olive oils 
of different provenance. They were also able to observe the development of rancidity in olive oil 
samples over time, which is due to the auto-oxidative formation of short-chain aldehydes. As a 
result of these experiments, the authors enunciated the so-called "MOSES principle" (where the 
acronym refers to "MOdular SEnsor System", after the modular design of the instrument): 

• As array sizes increase, each additional type of sensor of the same class contributes less 
information, because sensors within a class are rarely orthogonal. However, each 
additional sensor contributes the same amount of noise. Therefore, there is an optimum 
array size.  

• The use of different sensor classes, which respond to different physical or chemical 
properties of the analytes, allows larger numbers of sensors to be used, while still 
contributing information to the data set.   

 
This approach is not so obscure that it has not occurred to others independently. The sensor array 
patent of Stetter et al. [33] included a claim covering sensors of mixed classes. Commercial 
electronic noses made by Alpha MOS (Toulouse), EEV Ltd. (Chelmsford, U.K.), Nordic Sensor 
Technologies AB (Linköping, Sweden), and RST Rostock Raumfart und Umweltschatz GmbH 
(Rostock, Germany), and Lennartz Electronic GmbH (Tübingen, Germany) later used sensors of 
mixed type [59]. 
 
4.4 Sampling Systems for Electronic Noses 
 
A sampling system should deliver a vapor sample to a sensor array in a reproducible way. Its 
purpose is to reduce sample-to-sample variation that may result from differences in humidity, 
temperature, concentration, etc., as well as to preprocess the sample in any way that increases the 
quality of output data. To date, little research has been carried out on optimized sampling 
systems, even though some authors have demonstrated dramatic increases in performance of 
sensor arrays [60]. 
 
The most obvious use of a sampling system is to concentrate the vapors, in order to improve the 
sensitivity of the sensors. This approach was pioneered by Grate et al. [43] in a four-SAW sensor 
device which was optimized for chemical warfare agents. It was later commercialized for 
hydrocarbon measurement by H. Wohltjen at Microsensor Systems Inc. A short tube of organic 
sorbent (Tenax) was used to absorb vapors from the air. These were desorbed using a heater and 
passed through a short gas chromatography column to the sensor array. Similar preconcentrator 
approaches have been used by other authors [54].  
 
Samples often contain substances that are common to all, and, although the sensors are dominated 
by them, they do not contribute to discrimination. In bacterial cultures, for example, the common 
substance is water. In beer and wine, water and alcohol will be present in all samples in much 
larger quantity than any other constituent. We have successfully used Nafion tubing and 



 15 

anhydrous sodium sulfate to selectively remove water, alcohol, and some other hydrophilic 
vapors from samples [61]. Although sensor signals, on average, are reduced by a factor of ten or 
more, the removal of the dominant constituents greatly improves selectivity. Another type of 
sampling system [60] allowed TNT adsorbed to silica sand to be detected and discriminated from 
structurally similar compounds by vaporization of a sample from a tiny beaker, using a hot 
platinum filament. A second filament was located downstream to combust the sample to 
electrochemically reactive compounds, probably nitrogen oxides and carbon monoxide.  
 
4.5 Signal Processing and Pattern Classifiers for Electronic Noses 
 
Research into pattern classifiers has been perhaps the most aggressively-pursued aspect of 
electronic nose research. A large body of previous research on pattern classification and 
recognition has been drafted into the quest to extract the maximum information from the chemical 
data produced by the sensors. We cannot discount the glamor of artificial intelligence 
methodology, which attracts research effort at the expense of mundane hardware development. 
Even US funding agencies will readily fund development of insubstantial mathematical tools 
rather than support the development of new instruments and sensors.  
 
Nevertheless, two of the chief problems hindering e-nose applications are not being actively 
addressed. One of these problems is detection limit, the ability to detect small amounts of an 
analyte in a typically responsive matrix. The second problem is the detection of analytes in a 
variable matrix, for example, the detection of the characteristic odors of disease on the breath. 
Human breath can vary in composition with factors that have nothing to do with disease states, 
such as diet, smoking history, cultural background, and nutritional state [62], and so there must be 
some scatter among normal individuals which may complicate the task of disease detection. In 
principle, the notion of isolating a known class (the disease pattern) from a variable background 
should be solvable to the same degree as isolating a variable class from a constant background. In 
either case, we expect some loss in sensitivity, but perhaps not to a degree that would interfere 
with the power of disease detection. The reason it is not yet solved is because the method for 
pulling a pattern from the matrix in which the response patterns are most probably related is akin 
to the brain recognizing that THE CAT can be written �T__ E C___T�. We can read it, especially 
if it is given in context, but a computer has trouble with or without context. We need to 
understand how to generate the data that are truly independent and understand the ways or 
algorithms that allow us to pull the meaning from the data to solve this problem. I am not saying 
it is impossible, but I am saying that no one has succeeded yet in solving the two problems of 
sensitivity and/or selectivity. 
 
Many pattern classifiers have been examined for use in electronic noses. Decision-surface 
methods are directly applicable to arrays of arbitrary data. In our first explorations of sensor array 
technology, we used the k-nearest neighbor (KNN) method [63], which is intuitively understood 
by people with a minimal mathematical background. It proved to be surprisingly powerful. Years 
later, we compared its performance directly to a back-propagation artificial neural network 
(ANN) [44]. Both methods were equivalent in their ability to classify unknown grain samples. 
However, when either random or systematic error was added to real data, the ANN proved to be 
much more robust. The rate of successful classification by KNN decreased twice as quickly with 
increasing error as the ANN method. Moreover, we determined empirically that periodic full 
calibration was not needed as often with ANN. Partial calibration by known samples related to 
the unknowns was found to be sufficient. 
  
By far the most popular method of pattern classification in today�s electronic noses is principal 
components analysis (PCA). PCA is primarily a method of reducing the dimensionality of data. 
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An n-sensor array produces n-dimensional data, which cannot be plotted on simple graph paper if 
n > 3. By extracting principal components, most of the systematic variance is typically gathered 
into two or three dimensions, readily plotted and giving an appearance of comprehensibility. On 
the other hand, reduction in dimensionality must necessarily result in some loss of information. It 
nevertheless remains popular, if only because it has the distinctive feature of producing attractive 
plots that clearly display grouping of replicate samples, and the relative affinity of different 
samples to one another. These plots have strong presentation, not to mention marketing, appeal; 
alternate, and more powerful, pattern classifiers do not produce such visually appealing output. 
 
If any lesson has been learned from the use of PCA, it is that one must take care with the 
questions that one asks of a dataset with any statistical treatment. A data set that we gathered 
from bacterial headspace gases for different periods of growth can be used to understand the most 
common misuse or error in the application of PCA methods [60]. The data set consists of two 
bacterial species; separate cultures were grown for 0, 0.5, 1, 2, 3, and 6 hours. If PCA is applied 
to the entire data set in an attempt to separate all the classes at once, the 2 hour class can be 
separated from the 1 hour class. That is, growth can be detected at 2 hours. If, however, only a 
portion of the data set is selected, say, the blanks, the 0.5 hr and 1 hr cultures can readily be 
discriminated, even by PCA. In the first instance, we are implicitly demanding that the statistical 
method, which draws mutually perpendicular axis along the dimensions of maximum variance, 
separate all the classes at once when reduced to the two dimensions. In the second case, we are 
asking a much less complex question of our data set: can the 0, 0.5, and I hour samples be 
separated from one another?  
 
In other words, it is important to be clear about the question that is being asked of the pattern 
classification method. In the first instance, we attempt to separate all the classes at once, first, 
because it makes a nice illustration for a publication or presentation, and second, because we have 
not realized that we were even phrasing a question! In the second instance, we have thought about 
the question that we wanted to ask in the first place: How early in bacterial growth can we detect 
differences in the headspace gas? Accordingly, we pruned the data set to deliberately look at only 
the relevant data. The rotation of the axes that is used to separate classes in PCA is no longer 
constrained by the presence of unimportant data. The lesson to be learned from this illustration is 
that, when you are viewing one of the myriad PCA plots generated for the E-nose data, this 
representation is only valid and representative for the data set under consideration! No 
extrapolation to unknowns, and no extrapolation to subsets, can be made! Each extrapolation 
must be validated, and the accuracy and precision of the extrapolation measured by a valid 
statistical technique. 
 
Although many arcane advances have been made in the improvement of pattern classification, 
this subject is outside the scope of this review. We will limit our comments to two promising 
approaches:  
 
Llobet et al. [64] proposed a pattern classification approach called �fuzzy ARTMAP�, which is 
able to update its training while not losing its previous training. Using samples of increasing 
complexity (pure alcohol, coffee, and breath from ketotic cows), the fuzzy ARTMAP method 
substantially outperformed a conventional back-propagation neural network. The cow�s breath 
samples were taken in a barn, obviously under widely variable environmental conditions. This 
study of the fuzzy ARTMAP approach is one of the few that has identified and directly addressed 
the variable matrix problem.  
  
An additional nagging problem that is being attacked by signal processing development has been 
the problem of calibration. All chemical sensors exhibit drift over time. Much of this is 
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systematic and so can be predicted at least in part. Although drift is basically a hardware problem, 
there is no likelihood of solving this problem in the short term, and so some workers have turned 
to mathematical treatments to deal with it. Holmberg et al. [65] have developed methods to 
predict future calibration from past drift behavior. Of course, the continuing effort to develop 
sensors that do not drift or that have drift compensation [66] continues to be welcome since these 
decrease the reliance on algorithms which cannot entirely compensate for bad data.  
 
5. DEBUNKING MYTHS ABOUT THE E-NOSE.  
 
This section is presented to stimulate scientific and technical discussions. There are some 
clarifications required because words and terms can sometimes have ambiguous meanings and 
sometimes because there is genuine scientific controversy. But truth is found through open dialog 
and often disagreement is necessary to inspire progress. We sincerely hope that this section leads 
to better understanding of the E-nose and more rapid progress in its development and application. 
We apologize to those who do not hold these myths to be self-evident, and we realize that these 
are in some manner the humble constructs of the authors in order to structure discussion. 
However, many of these myths are in fact dearly held by potential users of the technology and 
may serve to warn the uninitiated who are just entering this field of research. 
 
 
5.1 Myth 1. The E-nose is a “better” solution to analytical problems. 
 
The analytical capability of the �electronic nose� has been greatly oversold, and as a result the 
technology has suffered damage to its credibility in certain applications that has taken years to 
overcome. Some entrepreneurs and researchers have still not learned the lesson, and continue to 
tout the E-nose as the final and only solution to virtually every analysis problem. Of the four 
major classes of analytical problem (Table II), the E-nose is only suited for selected subsets of 
these applications. The analytical problem, at least with today�s level of E-Nose sophistication, 
may often be better performed with another analytical instrument like a GC, IR, UV, 
electrochemical sensor, or GC/MS. The user still deserves the best available solution to their 
problem and often it will not be the E-nose.  
 
The fact is, the e-nose is not better than conventional techniques like GC or GC/MS, but rather it 
is different.  An example would be the detection of the rancidity in olive oil, for which we know 
the molecular cause, i.e. the accumulation of C5 and C6 aldehydes over time with exposure to air. 
After a modestly difficult workup, these aldehydes can be measured directly using GC or GC/MS. 
Rancid olive can also be discriminated from fresh by the enose using the headspace above a 
stored sample. The sample workup is nonexistent, but you do not get information on precisely 
what you are measuring. You are only aware that the oil has a pattern that is associated with 
patterns of rancid oils, and is different from those of fresh oils. For many applications, this is 
sufficient. Moreover, it is a simpler and less expensive method then GC/MS. 
 
Interestingly, as samples get more complex, and endpoints become less definable in a molecular 
sense, conventional methods lose their power, but the enose retains its ability to discriminate 
differences between samples. In a one year study [44], discrimination of grain samples according 
to the USDA categories of 'good', 'sour', 'musty', and �COFO� (Commercially Objectionable 
Foreign Odor�a catchall) with fidelity approaching that of an expert human panel was achieved 
with an E-nose. A prior study using GC/MS, lasting at least three years, had failed to find 
correlates between organoleptic scores and specific compounds observed in grain samples by 
GC/MS [45].  
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Coffee provides an example of an E-nose application that is appropriate to the method. The flavor 
and odor of coffee are composed of upwards of 640 volatile compounds [13]. Relatively minor 
changes in components (not necessarily major components, either) result in detectable changes in 
flavor and odor, according to no discernable pattern. Coffee, on the other hand, is a particularly 
good subject for e-nose analysis, and is capable of making fine distinctions among coffee 
varieties and blends [47].  
 
During the sixties and seventies, a substantial effort had been spent using GC, GC/MS, and 
pyrolysis-GC to discriminate among bacteria. It was largely successful, as far as it went, but the 
complexity of the methods and the continuing need for expert involvement made the methods 
unfeasible except where no alternatives existed (as in food chemistry), and the methodology has 
been largely abandoned. The E-nose provides the potential to do bacterial analysis in foods and 
infectious disease diagnosis with a simplified 'black box' approach which is more amenable to 
automation, portability, minimal training, and very low cost. A worthwhile goal indeed is our 
long-term dream to produce a portable breath tester for tuberculosis, which is cheap enough, 
rugged enough, and simple enough to be used throughout the world, with less reliance on the cold 
chain or central laboratories [67].  
 
5.2 Myth 2. The E-nose senses or determines “odor” and works like the human nose. 
 
E-nose devices respond to the chemicals to which the sensors respond. The concept of odor is a 
human one and so human receptors/sensors respond sometimes to totally different compounds 
than the e-nose sensors. The human sensor responses together with the complex human brain 
form the substance of a true �odor.� By its nature, the e-nose most probably is not responding to 
the same group of compounds as the nose and, in fact, different human noses most assuredly 
produce different response patterns and are not the same. In this case, the tremendous flexibility 
of the brain still categorizes/learns the different patterns. However, the E-nose response pattern 
for the odor and its matrix may also be distinct from all other patterns of the odors and their 
matrices under consideration. In this case, the E-nose, with its pattern classifier, can �tell� one 
�odor� from another in the data set of odors.   In this way, it can be called an odor classifier but 
should not be confused with identifying a �human odor� except in enlightened circumstances.   
 
Does the E-nose work like the human nose?  In some ways this is of course true and we can see 
this from the introduction, definition, the above discussion of the EN. But the sensors differ in 
critical ways. The nasal receptors typically amplify the sensor signals chemically in a manner 
much unlike current electronically amplified chemical sensors. For example, a single analyte 
molecule might un-block a channel in a membrane and release 105 or more ions. This makes the 
relative intensities in the nasal receptor patterns extremely large. We need to develop sensors that 
can chemically amplify (as well as electronically amplify) sensor signals. Perhaps neural nets and 
fuzzy logic methods of pattern recognition, which begin to simulate reinforcement of differences, 
are more effective in E-noses for this very reason [44, 64]. While we can learn from nature, we 
must be prepared to improve upon it, just like the microscope improves upon our eyes when 
viewing small images and the telescope improves our grasp of far away images. As the eye is not 
a spectrometer and can be fooled, so too can the nose be fooled. Our new E-noses must be more 
robust analytical instruments if they are to be deployed widespread. 
 
5.3 Myth 3. More sensors in the array are “better.”  
 
Are more sensors better? The debate continues, although most parties are now in agreement that 
there is an optimum number of sensors for each application, although that number, and the choice 
of sensors may differ greatly from one application to another. Some smaller arrays appear to have 
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as much or more capability than large arrays and the theoretical limit of selectivity has not been 
reached.  At least one manufacturer of electronic noses has recognized this. Cyrano Sciences Inc. 
sells its Cyranose 320 with 32 polymer composite sensors. Specially developed software that 
isolates those sensors that contribute to the discrimination of samples for each application. These 
are typically just 8 sensors, although the selected sensors differ by application.  
 
Several observations may be made. There is a clear benefit to more sensors if they are completely 
and perfectly redundant. The theoretical sensitivity of an optical array of completely redundant 
sensors has been shown to increase as the sq root of the number of sensors as expected from 
simple gaussian error theory [17]. A second observation is that too many sensors that are not 
exactly the same but are also not independently responsive or orthogonal can add noise but no 
new signal information and actually reduce the differentiating power of an array [21, 58]. A third 
observation is that the potential information content of an array of signals is quite large even for a 
small array [51, 68, 69]. A fourth observation involves the increased information content of 
heterogenous arrays, i.e. arrays made with different classes of sensor, as opposed to arrays made 
from sensors of a single class [58]. This is a direct result of the increased orthogonality of the data 
from different classes of sensors. At this stage of development of e-nose technology, the selection 
of the optimum sensor array is still an empirical science.  
 
5.4 Myth 4. All the sensors in the array need to be “partially sensitive.” 
 
Many arrays use sensor that respond to virtually every substance and these seem to work in the E-
nose and so, therefor, it might be true that this is needed. For sure, the information content is 
directly related to the different sensitivities to the same compounds or differential selectivity of 
the sensors in the array. There is a general assumption that the human nose works because of the 
relative signals from the receptors. We can agree with all of this. This leads some to conclude that 
an array of partially sensitive chemical sensors is the only way to make an E-nose. I disagree with 
this statement without clarification. Just like the eye sees different wavelengths by relative 
responses of rods and cones, the nose smells by differential responses. But this is not the entire 
story because the eye can easily be fooled into believing that blue + yellow is the same as green. 
However, a spectrometer cannot be fooled this way because it immediately knows if the light is 
green or a mix of blue and yellow wavelengths. Why?  Because the spectrometer is measuring a 
more fundamental property, the wavelength, and not a group of relative reactions on partially 
sensitive sensors! This analogy must be true of the nose also. So, admitting that there is a lot to be 
learned from the nature of the human nose, do we really want a human nose or do we want an 
instrument that is less ambiguous? I think the goal is the latter. So what are the differences we 
need and what must we do to get there? 
 
The statements has been made that the E-Nose requires a group of  �partially-selective� sensors 
and they should �all” be partially on for each compound in the gas stream. While this may be 
sufficient for some applications, this is not at all a general requirement but a myth. In fact, arrays 
that have some �off� channels should theoretically be better. And, in fact, the human nose 
probably gets as much information from the receptors that are not on as from the receptor that are 
on. Calculations illustrate that, using a statistical approach, the minimum number of sensors 
required to sort any one of 100 compounds into its components of up to a four component 
admixtures was only 6 gas sensors. In this data set, each analyte had a response on only 5 of the 6 
sensors [34] and one had to assume one channel was �off� to get the statistical scheme to work.. 
 

A second reason the array of partially sensitive chemical sensors is incomplete is because we 
have seen that digital data can improve pattern classification [34]. In this case, intelligence about 
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the signal was used to reduce the number of possibilities in the library, i.e. choose from among a 
smaller set of possibilities. Consider the receptors in the human nose that amplify the signal up to 
105 times [70]. This has the effect of making the data nearly digital. This receptor response has 
the effect of emphasizing certain receptors well beyond the noise and it would be as if we knew 
beforehand certain important sensors and in our software we could weight them heavily before 
interpretation. It seems we can do this with chemical sensors if principles are chosen that are 
radically different and heterogeneous. Responses that are �extremely� sensitive to one or a few 
compounds greatly improves discrimination power for arrays. Such performance may only come 
from heterogenous arrays, e.g. an electrochemical sensor will respond to ppb levels of NO, but a 
QMB will not (it is �off�), whereas the electrochemical sensor is not responsive to benzene and 
the QMB can see ppm levels of benzene. Again the empirical observation that heterogenous 
arrays fare better in applications supports this discussion.  
 
Our third observation on this point follows from the above. The Human nose has receptors that 
are partially responding but it seems to me that some of them are totally non-responsive to a 
given stimulus. The power of the mammalian nose, especially that of the dog, is legendary. Thus, 
we could predict that the most powerful arrays would be smaller, heterogeneous, and contain 
some on/off channels, channels with orders of magnitude differences in relative sensitivities.  
 
5.5 Myth 5. It is easy to calibrate an E-nose and extrapolate to unknowns. 
 
No one may seriously believe this, but a more pertinent question may be: can calibration can be 
extrapolated to situations involving unknowns? This is true for any well-developed and validated 
analytical method, but not many of these exist today for the E-nose technology. Analytical 
method validation is a specific and thorough process [71]. This step must proceed with caution 
and is the most difficult part of the application of the EN to any real world problem. Simply put, 
the issue is that multidimensional sensory data has interferences, drift, and noise that are also 
multidimensional and adequate methods to handle this situation are not yet easily validated for 
many applications!  
 
The rules for pattern classification are simply: 1) the pattern of responses must be statistically 
related to the endpoint, 2) the answer must be able to be adequately represented by the set of 
responses, 3) a relationship can be discovered by applying the chosen algorithm to the data, and 
4) the relationship can be validly extrapolated to additional situations and unknowns. It is up to 
the E-nose method developer to prove statistically that his endpoint (flavor or odor) is statistically 
related to the pattern achieved by the sensors. Further, statistical methods strictly apply only to 
the data set under consideration unless you can also �prove� a relationship to unknown data as we 
have discussed above for the PCA plots (Figure 6). 
 
Having burst the bubble here for some potential users, it is justified to be skeptical of E-nose 
results. However, can statistically valid relationships been found for difficult analyte/matrix data 
sets? The answer is a resounding yes. The power of the sensor array to represent feature space is 
apparently immense and estimate at more that 1021 features [34]. But the analyst must perform 
sufficient tests on calibration sets and unknown sets to understand that they are related and can be 
represented using the pattern classifier of choice. 
 
6. ELECTRONIC NOSE APPLICATIONS 
 
As recently as 1998 it was noted [9] that the majority of publications on electronic noses were in 
the area of research, with only a few (pardon the term) �real-world� applications beginning to 
appear. Our survey of the e-nose literature, done in February 2000 and again in July 2001, 
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showed a massive increase in the development of applications for the technology. In particular, 
applications in food technology dominate these.  
 
Sensor array and electronic nose methods have immediate appeal to technologists who must cope 
with subjective responses of clients and customers to undefined samples. Foods, beverages, 
cosmetics, packaging materials, consumer polymers, and even wastewaters, all have organoleptic 
restrictions and requirements. Two approaches have been conventionally used to characterize 
such samples. Subjective analysis by panels of trained persons is the most common approach. 
Brute-force analysis, in an attempt to isolate the compound(s) responsible for taste and odor, is 
the other. The Water Department in the City of Chicago, for example, specifically searches for 2-
methylborneol and geosmin in drinking water at specific times of year, because these are known 
to be the cause of the �earthy� or musty taste of water during algal blooms in Lake Michigan. 
Electronic noses provide a third, and complementary, approach to characterization. Like taste and 
odor panels, they are especially useful for comparing samples, rather than relating them to a cause 
understood at the molecular level. 
 
6.1 Food Applications 
 
The food industry has spent considerable effort over the years to reduce flavors and odors from an 
art to a science, with limited success. Many foodstuffs produce volatiles in the concentration 
ranges of 1 to 1000 ppm which are appropriate to typical chemical sensors.  Not surprisingly, 
therefore, applications to food have been reviewed regularly since the inception of the electronic 
nose concept. In 1992, Dodd et al. [72] reviewed some of the potential applications of electronic 
noses, foreshadowing a large amount of work over the next decade. The subject has since been 
reviewed by Göpel [73], Kress-Rogers [14], Schaller et al. [46], Krings and Berger [74], Giese 
[75], and Stephan et al. [76].  
 
Electronic noses have been used for meat, grains, coffee, beer, mushrooms, cheese, sugar, fish, 
fruits, juices, alcoholic beverages, and packaging materials. Frequently, these reports refer to 
home-made or early commercial electronic noses such as the Aromascan. Homogeneous arrays 
with reduced resolving power are usually used. Yet these devices are often capable of the 
discrimination demanded by the application. Table VI lists several references according to the 
foodstuff examined. Many of these applications are concerned with the detection or confirmation 
of bacterial spoilage, especially in meat and stored grain. Such studies have sometimes been 
paired with the study of microorganisms recovered from spoiled meat [77, 78].  
  
TABLE VI NEAR HERE 
 
A recurring theme in much of the research on food is the correlation of subjective sensory 
responses, electronic nose responses, and conventional reductionist analysis by gas 
chromatography or GC-MS. Arnold and Senter [79] were able to detect ten alcohols, from C-2 to 
C-14, an aldehyde, and indole from the headspace of bacteria cultured from processed poultry. In 
another study, Siegmund and Pfannhauser [80] studied cooked poultry as it became rancid during 
chilled storage, presumably through nonbacterial spoilage.  
 
Foods, because of their great variety, give us insight into the power of the electronic nose. Some 
odours are chemically simple. The rancid flavor of old olive oil is due to the accumulation of 
normal aldehydes [81]. Apples represent a more complex sample. Nakamura et al. [82] cites the 
flavor of apples as being due to a mixture of nine organic compounds. Commercial artificial apple 
flavoring is a mixture of these nine compounds. By comparing e-nose results on these mixtures, 
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an optimal sensor array for characterizing apple flavor was selected.  Apples also show 
differences according to variety, integrity, and ripeness [53].  
 
Coffee represents the other end of the spectrum of complexity. The subject of intense 
experimentation due to its value and complex chemistry, the flavor and odor of this beverage are 
due to at least 640 volatile compounds [72]. Over 120 of these compounds can be unambiguously 
identified at one time in a single analysis after extraction by SPME and gas chromatography [83]. 
Much more protracted analysis is needed to determine most of the compounds that actually 
contribute to flavor and odor. Relatively minor changes in this complex mixture can be readily 
detected by the senses.  
 
6.2 Bacteriological 
 
Bacteriologists have long known that many species of bacteria can be identified by their odors 
[84]. Historically, much of practical bacterial taxonomy has depended on the unique metabolic 
characteristics of each species of microorganisms. No organism completely oxidizes all its food 
to carbon dioxide, and it is safe to say that every species of animal has a metabolically determined 
baseline emission of waste. Since many metabolic products are volatile, it is not surprising that 
bacterial cultures are good subjects for electronic nose evaluation. Early research in headspace 
analysis of cultures and medical specimens has been used to identify the microorganisms 
involved [85, 86, 87]. Several authors have demonstrated that bacterial species can almost always 
be discriminated by even simple electronic noses [88, 89, 90, 91, 92]. 
 
For practical medical applications, however, detection limit has always been an important issue. 
McEntegart et al. [61] demonstrated that E. coli in a culture medium was not detected until cell 
concentrations had exceeded 108/mL.  
 
6.3 Medical 
 
The medical field offers great potential for the application of electronic noses. In essence, the 
human body processes nonvolatile, mainly  macromolecular foods into volatile products. Both the 
normal functioning of the body, and aberrations of that functioning, should be detectable on e-
noses. There is a ready market for diagnostic methods that are noninvasive and inexpensive; the 
e-nose offers both advantages. The medical potential has been addressed recently in an excellent 
review by Pavlou and Turner [93].  
 
Breath tests, in particular, hold special promise, because of the ease with which samples can be 
taken. Some research has indicated that the organic volatiles found in human breath do not vary 
greatly among individuals. Kratoszynski et al. [62] measured over 100 volatile compounds in the 
breath of healthy people selected across bounds of gender, race, and socioeconomic status. Three 
compounds, acetone, isoprene, and acetonitrile, made up 50% of the total mass of exhaled 
organics. Each organic compound varied within an order of magnitude among individuals. These 
results imply that the variation in matrix between individuals will not be very great. Similar 
studies have been done by Jansson and Larsson [94] Phillips et al. [95].  
Some of the suggested applications are: 

• Detection of urinary tract infections from urine headspace gas. 
• Breath test for cancer  
• Breath tests for respiratory infections (staphylococcus, bacterial pneumonia, tuberculosis, 

etc.)  
• Breath tests for various forms of poisoning 
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• Breath and urine tests for metabolic disorders, including solid and humoral tumors and 
diabetes  

• Melanomas, which have been detected by trained dogs using odor (news item) 
• Wound infections  
• Neonatal complications, such as jaundice, where even such simple diagnostic methods as 

blood sampling are invasive 
 
Di Natale [96] has recently reported discrimination among patients with lung cancer, nondiseased 
controls, and lung cancer patients after surgery. Solid tumors are often poorly vascularized and 
have a metabolism adapted to rapid growth rather than static function. The combination of 
necrotic or anaerobic tissue and rapid metabolism would be expected to generate volatiles. The 
Greeks knew cancer as �the stinking disease�, which suggests that other  types of cancer will also 
respond to diagnosis and monitoring by e-nose.  
 
Because of the ease with which bacteria can be detected and discriminated from one another, one 
would also expect that infections would be easily detected against the background of normal 
metabolism. Besides volatiles produced by the bacteria themselves, local tissue inflammation and 
damage caused by the infection would also produce volatile substances. One researcher has 
reported the detection of bacterial pneumonia, albeit in intubated (i.e., seriously ill) patients [97]. 
Urinary tract infections have been observed to cause compositional changes in the headspace gas 
above urine specimens [86, 98, 99].  
 
6.4 Environment and Safety  
 
Analytical chemistry in safety and environment usually involves the detection and measurement 
of pure chemicals such as toxic gases or solvents. Although electronic noses have been used to 
measure or identify pure chemicals, these instruments are rarely the best approach, compared 
with such conventional techniques as gas chromatography or photoionization. There are distinct 
areas, however, where the special properties of the e-nose are helpful.  
 
Rose-Pehrsson et al. [100] have been developing a fire detector for naval and space use that fuses 
the outputs of many sensors, both physical and chemical. In space, combustion has special 
characteristics due to the absence of gravity. Flames are often invisible, and carbon monoxide 
concentrations can increase very rapidly, since fumes do not escape from the fire by convection. 
Hence, it is in the interest of the designer to use as many modes of detection as possible, 
including ultraviolet and acoustic sensors, as well as carbon monoxide and other gas sensors, in a 
fire detection system.  
 
E-noses have also been used in the characterization of wastewater. Rather than detailed analysis, 
wastewater is often characterized by comprehensive methods with endpoints that are as difficult 
to justify as the e-nose array. BOD, or biological oxygen demand, measures the consumption of 
oxygen by organisms in a sample of water over a fixed time period. Since the composition of 
such waters can be complex, in certain cases a sensor array pattern can substitute for analysis for 
several different parameters. Singh et al. [101] used an e-nose to monitor water quality. Later, 
Fenner and Steutz [102] used the technique to monitor waste treatment.  
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7. THE FUTURE OF SENSOR ARRAYS AND ELECTRONIC NOSES  
 
It is always dangerous to predict the future, but it is often the way we challenge ourselves with 
the most difficult goals. The development of the electronic nose is still in its early stages. Many 
instruments have been rushed to market with insufficiently developed sampling systems and 
especially with sensors that are inappropriate for the task. Elaborate sampling and data-processing 
systems are typically used to attempt to compensate for the effects of temperature, humidity, 
memory effects, and low sensitivity. But even the most powerful pattern classifiers cannot 
operate with low-quality sensor data. Any new technology must overcome a barrier of suspicion, 
but the modest performance of the early commercial electronic noses has raised the barrier still 
further. One critic has already, if prematurely, dismissed the electronic nose in print as "a thing of 
the past" [103] and another has more accurately reported, �...the long-term performance of 
electronic noses has not lived up to expectations...� [104]. Each of the three components of the 
electronic nose is subject to improvement, to achieve improved sensitivity with minimum impact 
on selectivity.  
 
Where do we go from here? It is clear that the E-nose has made much progress and come a long 
way. But, there is yet much to do. Our human nose is elegant but not foolproof. It still has more 
redundancy and self-amplified sensors and is better at most things than an E-nose. This is proven 
by the existence of the olfactory panels that have not been replaced by the E-nose. However, the 
sensor array does not fatigue as easily, can be placed in hazardous atmospheres, is less costly and 
can travel easily into outer space. It also holds the promise of being much cheaper, smaller and 
easier to use and maintain than a mass spectrometer. Students have build e-noses for us from 
spare parts found in the laboratory. When this simplicity is combined with the power of the 
sensor array, the e-nose warrants the attention it is getting.   
 
If the issues of calibration, extrapolation to unknown data sets, and stability of sensors and 
patterns can not be improved, the E-nose will never achieve its rightful place in the arsenal of 
analytical tools. On the other hand, progress on these technical problems offers the promise to 
revolutionize analytical chemistry in the field. It ill boost the applications of chemical sensors and 
micro-instrumentation many-fold.  
 
Where will these improvements lie?  Certainly, at least in part in improved chemical sensors. We 
continue to observe improvements in drift correction [66]. Such on-board automated 
compensation, now routine for physical sensors, will become more routine for chemical sensors 
and spur more applications. Further, chemical sensors will more mimic nature in being self-
amplifying and regenerating, perhaps by incorporating biological components and mechanisms. 
Chemical sensors will be tuned to measure such fundamental chemical parameters as solubility 
and binding constants, making them more like physical sensors that do not simply measure color 
but rather wavelength of light. Another area of improvement will be in the array itself with 
compensation for patterns and additional sensor heterogeneity. Arrays may become 
heterogeneous in sensor class and type as well as in integration into u-TAS, with the addition of 
sampling and separation systems. We can envision data from arrays of arrays that are spatially 
and temporally separated like the human nose to be an improvement. And, of course, pattern 
classification must be improved. A tiny bird, whose brain contains the smallest amount of gray 
matter, can recognize a mouse a 1000 feet away in milliseconds, against any background (matrix) 
while flying, yet the most powerful of our PCs struggle with elementary pattern recognition. We 
require novel approaches to these algorithms and stacked and/or sequential application of 
specialized algorithms seem appropriate here by the above analogy. 
 
We hope that these discussions and citation do not offend anyone because of their less than 
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comprehensive nature. One always makes choices in these matters and the responsibility lies with 
the authors for this manuscript. However, we hope this is a contribution to those in and allied to 
this field of work. 
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Table I. Classification of primary and review papers citing the terms �electronic nose(s)�, 
�artificial olfaction�, or �sensor array(s)� for the time periods 1994-1999 and January 2000 - June 
2001. Classification was by inspection of titles and keywords. Since many different types of 
physical property sensors, such as imaging devices, are referenced under �sensor arrays�, only 
those papers referring to chemical sensors are included in this listing.  
 

Number of papers Category 
1994-1999 2000-2001 

(18 months) 
Sensors and hardware design 50 46 
Pattern classification and theory 25 16 
Applications � food, agriculture 65 36 
Applications � medical 6 9 
Applications � bacteriology 5 8 
Relationship to biological olfaction 5 6 
General, reviews, miscellaneous 50 40 

Total 206 161 
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Table II. Four generic kinds of analytical problems 

 
Type A: A single component in a complex matrix, for example, CO in air or Fe in iron ore. The 
matrix (that portion of the sample that is not the target of the analysis) may be consistent or 
highly variable. A special subset of this class is trace analysis � the needle in the haystack 
problem. This is the class of analysis that single sensors often target. The carbon monoxide sensor 
is one of the two or three most common chemical sensors in commerce.  
 
Type B: The major components of a mixture � Air consists of five important components, 
nitrogen, oxygen, carbon dioxide, water vapor, and argon. Such analysis can be carried out by gas 
chromatography or in part by infrared analysis or by oxygen and relative humidity sensors.  
 
Type C: Complex mixtures � There are 640 characterized components in the headspace gas 
above coffee. Extensive sample preparation and complex instrumentation and training is 
generally required for this type of task.  
 
Type D:  Determination of a subjective, collective, or arbitrary endpoint. Examples of such 
endpoints include lower explosive limits or lower flammable limits, toxic concentrations, and 
assessments of quality of a raw material such as grain, or of a finished product such as a food for 
sale. One may not be able to provide a specific and complete molecular explanation of the 
endpoint or the endpoint may not refer to a specific molecule or set of molecules and their 
concentrations. This class of analytical problem is addressed directly by the human or electronic 
nose and/or tongue as well as a select few sensors (e.g., the combustible gas sensor). 
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Table III. Properties typically associated with chemical sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
They all have: 
 a sensitive layer that is in chemical contact with the analyte gas. 
 a change in the chemistry of the sensitive layer; i.e. it is not the same after 

exposure as before exposure to the analyte because a stoichiometric change has occurred [a 
reaction]. 

no moving parts in this mechanism  
They all respond to the presence of a chemical with an electrical output and this 

means the sensitive layer is on a platform that allows transduction or coupling of the 
sensitive layer changes to a tranducer that relates the change to electrical signals. 

They are physically small. 
They operate in real time, controlled by thermodynamic and kinetics of a chemical 

reaction - although the readout may be temporal [notwithstanding physical limitations due to 
design]. 

They do not necessarily measure a single or simple physical or chemical property. 
They are typically less expensive and more convenient than an equivalent instrument 

for  the same chemical measurements. 
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Table IV. Possible reactions at the chemical interface.  
 
 
ADSORPTION     A[gas] +  S[surface site] =  AS[surface]       Kads 
 
 PHYSISORPTION -   Vads = A e-dG/kT 
 
 CHEMISORPTION -   
 
PARTITIONING       K = Cm / Cs 
 
ACID-BASE       HA  + KOH  =   H2O   + K+ + A-     Ka  or  Kb 
 
PRECIPITATION  ----  Ag+ [aq] +  NaCl [aq] =  AgCl [s]  + Na+    Ksp 
 
ION EXCHANGE -  H+  [aq] + Na+-surface  =  H+-surface + Na+[aq]    Kiex 
 
OXIDATION/REDUCTION   CO  + ½ O2 = CO2     Krxn 
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 Table V. Chemical sensors used in arrays and e-noses. Internet links to these companies can be 
found at the NOSE web site [2].  
 
 
Transduction Mode 
(Chemical Interface) 
 

Comments  

 
Conductimetric 
(conductive polymer) 
 

 
Earliest commercial e-nose (Aromascan); easily 
made by electrodeposition (moisture, temperature, 
history-sensitive) 
 

 

Conductimetric 
(metal oxide semi-
conductor) 
 

Used in largest number of e-noses (moisture and 
history-sensitive)  
WMA Airsense Electronic Nose 
Fox n000 (Alpha MOS)  
NST 3200 series (AppliedSensor (was: Nordic 
Sensor, MoTech)  
FreshSense (Element, Ltd.) 
Moses (Lennartz Electonic) 
 

 

Mechanical 
(sorptive polymer, 
quartz microbalance) 
 

Better linearity than above sensors 
Libranose (University of Rome �Tor Vergata�) 
Moses (Lennartz Electronic) 

 

Mechanical 
(sorptive polymer, 
SAW sensor) 
 

VaporLab (Microsensor Systems, Inc.) 
The Electronic Nose: combined with short-column 
GC (Electronic Sensor Technology) 

 

Electrochemical 
(amperometric gas 
sensor) 

Linear sensor response allows normalization of 
patterns for concentration independence 
Moses Electronic Nose (Lennartz Electronic) 
CPS-100 (Transducer Research, Inc.) 
 

 

   
Electrochemical, 
Potentiometric ion-
selective sensor 
 

Electronic tongue  

Conductimetric 
Polymer composite 
sensors 
 

Cyranose 320 (Cyrano Sciences, Inc.)   

Conductimetric,  
ChemFET 
 

NST 3200 series (AppliedSensor (was: Nordic 
Sensor, MoTech) 

 

Mass spectrometer HP 4440A (Agilent Technologies) 
Prometheus, Kronos (Alpha MOS)  
  

 

Optical, fluorescent 
sorptive beads on fiber 

BeadArray (Illumina, Inc., San Diego)   
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optics 
   
Table VI. References to electronic nose classification of foodstuff.  
 
Class of Food  Reference 
 
Fruit 

 
Apples 
 

 
82, 105, 106 

 pears 
 

107 

 juices 
 

53 

 juices, processing history 
 

108 

 identifying unknown 
 

109 

Milk off-flavors 
 

104 

 spoilage 
 

89, 92 

Cooking oils rancidity 
 

81 

 oxidation 
 

110, 111 

Grain quality 
 

44,112 

 cereals 
 

113 

Meat general 
 

114 

 beef 
 

78, 115 

 fish 
 

116 

 chicken 
 

79, 80 

Beverages coffee 
 

13, 101 

 wine 
 

49 

 beer 
 

117 

Prepared foods mayonnaise 54 
   
   
   
   
 
 



 39 

CAPTIONS TO FIGURES 
 
Figure 1. Three categories of minature analytical devices. (a) Chemical sensor, where a chemical 
reaction is linked to a transduction mechanism. (b) Micro-instrument, in which an external field 
or energy source is used to nondestructively measure a physical property such as optical 
absorption. (c) Micro-total analytical system, which carries out a multistep analytical procedure, 
and generally incorporates a sensor or a micro-instrument as the detection device.  
 
Figure 2. Organization of chemical sensors by class (transduction mechanism).  
 
Figure 3. Fundamental structure of an electronic nose, including a sampling system, and array of 
sensors, and a pattern classifier. Also shown are typical array responses for different pure 
chemicals.  
 
Figure 4. The �ILLI-Nose�, designed by the authors, which uses four electrochemical sensors and 
a catalytic converter to generate 16 virtual sensors.  
 
Figure 5. Functional comparison of the mammalian olfactory system and the electronic nose.  
 
Figure 6 (a) Analysis of headspace gases of Enterobacter aerogenes cultures. All data are 
included. Growth at two hours can be discriminated from 1 hour and earlier data, but no growth 
can be seen at one hour. Data from eight metal oxide and four electrochemical sensors are 
included.  
 
Figure 6 (b) Analysis of the same data set as Figure 6 (a), except that only data from 0.5 hour and 
1 hour are included.   
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Figure 1.  
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Figure 2.  
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Figure 3.  
 

Fundamental Structure of An Electronic Nose
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Figure 4.  
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Figure 5.  
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Figure 6a.  
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Figure 6b.  
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